

Evogene - Plant genomics approach to develop enhanced food and energy sources NASA Green Forum, September 2009

plantbiotechnology

Agenda

- Background
- Ag-Biotech Business
- Biofuels Business
- Summary

plantbiotechnology

To address the growing global needs for food, feed & energy by utilizing computational and genomic capabilities

Need for Food and Feed

plantbiotechnology

Need to increase agricultural productivity to maintain food & feed security

Need For Energy

plantbiotechnology

Immediate need for sustainable & renewable energy resources

Evogene's Mission

plantbiotechnology

To be the world leader in delivering improved plants to the (I) Ag-biotech and (II) Biofuel industries

Brief History

plantbiotechnology

2000

Initiated as division of Compugen (Nasdaq: CGEN)

2002

Spun-off as an independent company

2002-2009

- Raised \$47M private investors & public
- June 2007 IPO Tel Aviv Stock Exchange (EVGN)

2007-2009

- License agreements with Bayer, Monsanto, Pioneer/Dupont & Other
- Collaboration agreement with Ormat
- Multiyear collaboration with Monsanto, Bayer CropScience and Syngenta

2009

- 85 Employees (mathematics, computer science, genetics, molecular biology, plant transformation and agronomy)
- Headquarters located in Rehovot, Israel

plantbiotechnology

Agenda

- Background
- Ag-Biotech Business
- Biofuels Business
- Summary

Concept: Seed + Gene = Product

plantbiotechnology

Discovery of key genes linked to desired plant trait

In-plant validation of key genes

Improved Plant

Ag-Biotech Seed Market

plantbiotechnology

2008: Market Value - \$7.5B; 280M acres

Ag-Biotech Seed market - By Crop, 2008

- Corn and Soybean dominant Ag-Biotech crops (food, feed, biofuels)
- Expected next Ag-Bitech crops: Wheat & Rice

Generating Revenue from Traits

Ag-Biotech Traits – Existing & Future Products

Aiming at Increasing Yield Productivity

Evogene's Business Model – Ag-Biotech Business

World-Leading Prediction Capabilities

plantbiotechnology

Rapid and reliable computational discovery of candidate genes linked to desired plant traits

Example of Results

plantbiotechnology

Drought Genes

- Significantly higher yield under normal and drought conditions
- Successful field trial results in Corn (2008) and Tomato (2006/7)
- On-going validation in various target plants- Corn, Soybean, Cotton, Canola, Rice, Tomato

Current Pipeline & Partners as of 05/2008

Multiyear Collaboration with Monsanto - Aug.2008

- 5 Year Collaboration on improving Yield, Drought Tolerance & Nitrogen Use Efficiency
- Crops corn, soybean, cotton and canola
- \$35M Research funding by Monsanto
- Milestone payments + Royalties based on sales
- Monsanto invested \$18M equity in Evogene (at \$5.5 per share) + option for additional \$12M subject to Evogene diligence requirements

plantbiotechnology

Agenda

- Background
- Ag-Biotech Business
- Biofuels Business
- Summary & Future Outlook

Global Biodiesel Market is Rapidly Growing

plantbiotechnology

- 2008 production: 11 Bn L
- 3 top countries (Bn L):

Germany: 2.9

USA: 2.5

Brazil: 1.3

Driving Biojet Market

Motivating Forces

- Anticipated "Green Taxation" need to reduce life cycle GHG (<u>European Emissions Trading System</u>)
- Fuel price and availability

Vision: Achieve carbon neutral growth and aspire to a carbon-free future through use of different alternative fuels

Biojet - main mid-term solution: Targets

- Identify <u>viable and sustainable</u> biofuel sources for commercial aviation
- Identify plant based feedstock
 - Lower CO₂ lifecycle
 - Not compete with food or promote deforestation

plantbiotechnology

Certification process –
50/50 blend with jet-A expected to be
certified by 2011 (originally planned for 2013)

Feedstock - Main Driver of Production Costs

plantbiotechnology

Feedstock Comprises ~80% of biodiesel production costs!

Main Bottleneck: Feedstock Sources

plantbiotechnology

Need for 2nd generation feedstock:

- Sustainable
- Reduce GHG
- Growth on non arable lands
- 2 Available
 - Million ha potential to meet demand
- **Economic feasible**
 - Competitive cost compared to vegetables oils /fossil fuels

2nd Generation Vs. 1st generation Feedstock

plantbiotechnology

	Soy	Canola	Jatropha	Castor
Sustainability	Food usesArable lands	Food usesArable lands	✓ Non edible✓ Non arable lands	✓ Non edible✓ Non arable lands
Availability	✓ Commercial crop	✓ Commercial crop	✓ Million Ha's available land	✓ Million Ha's available land (Brazil - ~9 M Ha potential in NE; US – Millions of ha in Texas)
Economic Feasibility	 Highly-fluctuating oil prices 	 Highly-fluctuating oil prices 	 ✓ High oil yield x Tree - ~5 years to reach optimal yields x Yield potential - unclear x Handpicked (also impacts availability) x Requires long time to improve by breeding 	 ✓ High oil yield (potential of 3-5 ton/ha; ~50% oil content) ✓ Potential to turn into commercial crop → competitive oil production costs

Main feedstock today: not sustainable nor economical

2nd generation feedstock → need for reliable supply at competitive prices

Evogene's Biofuel Vision

plantbiotechnology

Utilize technology to develop new 2nd generation feedstock for Biodiesel

Castor Bean was selected as 2nd generation feedstock of focus

The Potential to Improve Castor

plantbiotechnology

Castor Today - Niche crop

- Low yields <1 ton/ha (ton oil/ha)</p>
- Traditional farming
 - Insufficient seed quality
 - Low plant density
 - Handpicked
- Limited area –1.3 million ha (~ bn L of oil
- Estimation production costs over 700\$ per ton oil (equivalent \$80/brl)
- Very limited use as feedstock for biodiesel

Future Castor – Commercial Crop

- High yield 4-5 ton/ha => lower production costs
- Modern farming
 - Improved varieties using conventional & advanced breeding tools – drought tolerant
 - High plant density
 - Mechanical harvest
- Potential area millions ha
- Estimated production costs 350\$ per ton oil
- Main feedstock for biofuel

Castor has high potential as 2nd generation feedstock → need to improve availability and economic feasibility

Proof of Concept - Pre-Varieties in Israel

plantbiotechnology

Variety collection

300 ecotypes from over 40 countries

Field trials in Israeli semi arid lands:

- 2008 completion of 1st year
 - Feasibility test potential yield of 5 tons/ha
 - Feasibility of Agro technical growth protocols mechanical harvest demonstrated
- □ 2009 − 2nd year (results expected in Oct. 2009)
 - Observation field re-trial of selected lines
 - Evaluation and selection of new castor inventories (new genetic material)
 - Agro technical tests evaluation of seed yield under different water regimes and different plant density

Collaborators

World Leader in geothermal energy ORMAT TECHNOLOGIES

View From the Field

Commercialize Improved Feedstock

Source: GIS (Geographic Information System)

Main Target Areas – Brazil & Texas

Potential of castor as 2nd generation feedstock

plantbiotechnology

- potential for low cost oil => \$350 per ton
 - Yield potential of 4-5 ton/ha
 - ~50% oil content

Sustainable

- Non edible
- Potential for growth on non arable lands
- low water and nutrients requirements
- Complete Life Cycle Analysis is underway

Available

- Commercial scale growth modern mechanized growth methods
- Millions of Ha in Brazil and USA

Evogene's approach:

Apply advanced breeding and modern agro-technique methods to revolutionize castor performance => from a niche crop into a high yielding modern crops

Project with NASA Glenn Research Center

- Project Objective:
 - Development and testing of naturally selected Evogene's castor bean oil as potential aviation fuel
- Project Timeframe: 2.5 years (June 2009 December 2011)

Evogene Seminar *NASA Green Forum, September 2009*

